TIDAL DATABASE ON SEAWATCH INDONESIA PROGRAM

Agus Setiawan SEAWATCH Indonesia Program Directorate for Human Settlement and Environmental Technology - BPPT e-mail : ghoest@bppt.go.id

Achmad Wibisono Directorate for Informatics and Electronics Technology - BPPT

ABSTRACT

Tide is one of the important parameter in oceanography. SEAWATCH Indonesia as a project that concern in monitoring sea environment needs a complete tidal database to support its operational activities. For this reason, the tidal database was developed to collect all of available tidal data in Indonesia from many sources.

This software was designed very easy and user friendly under windows 95 platform using Visual C++ and called PASUT Version 1.002.

1. Background

Tide is one of the important parameter in oceanography. It is useful if the database of the tidal parameter can be completed in the SEAWATCH Indonesia database. In this activity, the tidal constituents of Indonesian waters are collected from several sources such as DISHIDROS TNI AL, P3O LIPI, Survey Reports, etc. and for analysis, the harmonic analysis with least square method is used. The software for this analysis developed using Visual C++ language and compatible for Windows 95. The software called PASUT Version 1.002.

The purpose of this database is to collect all of the Indonesia tidal data that available to anticipate needs from the users of SEAWATCH Indonesia and also for the internal needs (for survey, research, etc.).

Actually this software can be used for 53 tidal constituents, but because of the general tidal data in Indonesia maximum only have 9 constituents, so in this first version the ability of the software only limited for 9 constituents only.

2. Theory

Tides are shallow water waves, generated by gravitational forces exerted by the moon and sun upon the oceans.

The harmonic method is the most usual and satisfactory method for the prediction of tidal heights. It makes use of the knowledge that the observed tides is the sum of a number of components or partial tides, each of whose periods precisely corresponds with the period of one of the relative astronomical motions between earth, sun and moon. Each of the partial tides has an amplitude and phase which is unique to a given location. In this context, phase means the fraction of tidal cycle that has been completed at a given reference time. It depends upon the period of the tide-raising force concerned, and upon the lag of the partial tide for that particular location. The explanation above can be written as a function below

$$\eta(t) = S_0 + SS_0 + \sum_{i=1}^{N} A_i \cos(\omega_i t - \phi_i)$$
 (2.1)

where :

 $\eta(t)$: tidal elevation as a function of time

A_i : amplitude component number - i

 ω_i : $2\pi/T_i$, T_i = period of the component number - i

 ϕ_i : phase of the component number -i

 S_0 : mean sea level

 SS_0 : changes of seasonal mean sea level because of meteorological factor

t : time

N : number of component

Ignoring the parameter affected by meteorological factor, the equation (2.1) can be written as follows :

$$\eta(t) = S_0 + \sum_{i=1}^{\kappa} A_i \cos(\omega_i t_n) + \sum_{i=1}^{\kappa} B_i \cos(\omega_i t_n) \quad (2.2)$$

where :

 A_i dan B_i : the harmonic constituents number - i K : number of the tidal constituents

 t_n : time period ($t_n = -n, ..., n$; t = 0 is the middle time).

The solution of the equation above can be solved using linear equation system with least square method by computer.

3. The Computer Program Description

3.1. Main Routines Required

The PASUT Version 1.002 consist of some routines as follows :

WINMAIN	the main program which controls									
	all routines program.									
INPUT	reads the input file and makes									
1	a new input file									
EDIT	edits first and last time of									
2211	prediction and time reference									
NDBD_NLY	calculates the long of the time									
1,222_1,21	prediction									
MIDDAY	calculates the middle day of time									
11122111	prediction									
VUF	reads and calculates the nodal									
	informations and corrections									
CALMTRX	solve the matrix problem									
OUTPUT	print the prediction result to									
	screen									
	and printer									

3.2. Data Input

The input file needed by this software should have format as follows :

Header	identification to check the										
	validity of the input file										
\mathbf{S}_0	mean sea level										
Lat-Long	latitude and longitude of the tidal										
	station. (- for West and South)										
Tidal	the value of amplitude and phase										
Constituents	of tidal constituents										

The units of mean sea level and amplitudes are in cm. and the phase in degree.

The input files can be created using facility in this software or Worpad Editor.

3.3. Output

The outputs of this software consist of four results as follows (on screen and printer) :

- 1. table of tidal constituents.
- 2. time series (graphic).
- 3. time series (table).
- 4. text file which can be downloaded by Excel.

3.4. Help Files

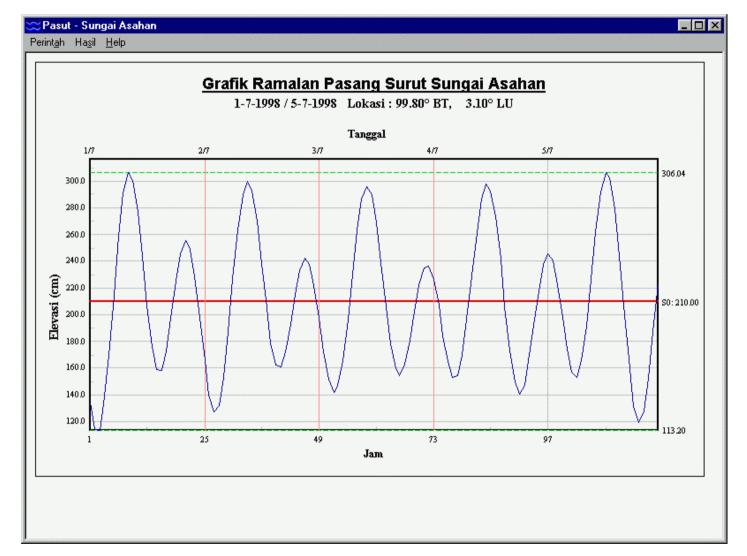
To help using this software, you can also execute the help files of this software. The help files are made in Indonesia version.

4. Bibliography

- Brown, J. et. al, 1989, Waves, Tides and Shallow Water Processes, Butterworth Heinemann in Association with The Open University, Walton Hall, Milton Keynes, MK7 6AA, England, p. 43 - 65.
- Foremann, M.G.G and R.F. Henry, 1979, Tidal Analysis Based on High and Low Water Observation, Pacific Marine Science Report 79-15, Institute of Ocean Science, Patricia Bay, Sidney, B.C., 36 p.
- -----, 1997, Daftar Pasang Surut Kepulauan Indonesia, Dinas Hidro-Oseanografi TNI AL.

APPENDIX

APPENDIX A


The Input File :															
[kom	[kom]														
Jomba	ang														
100.000000															
-90.0	000000 80.000	0000													
M2	28.984104200	30.000	80.000												
S2	30.00000000	20.000	8.000												
N2	28.439729500	20.000	89.000												
К2	30.082137300	2.000	90.000												
K1	15.041068600	2.000	80.000												
01	13.943035600	20.000	89.000												
P1	14.958931400	2.000	98.000												
M4	57.96821	2.000	9.000												
MS4	58.9841	2.000	8.000												

APPENDIX B

- The Output File :
- 1. Tidal Constituents.
- 2. Times Series of Tidal Elevation (Graphics).
- 3. Table of Tidal Elevation.

 t <mark> - Sungai As</mark> a Ha <u>s</u> il <u>H</u> elp	han											
	<u>D A</u>	<u>та к</u>	Sta	<mark>9 O N E</mark> asiun : S asi : 99.8	Sungai	Asaha	n	<u>s u r</u>	<u>10 T</u>			1
		SO	M2	S2	N2	К2	К1	01	P1	M4	MS4	
Fasa (leg)		99.00	144.00	87.00	144.00	341.00	0.00	340.00			
Amplit	udo (cm)	210.00	105.00	50.00	20.00	14.00	22.00	0.00	7.00			

Appendix B.1. Tidal Constituents as the Input File

Appendix B.2. Time Series of Prediction Result

😋 Pasut - Sungai Asahan

Perint<u>a</u>h Ha<u>s</u>il <u>H</u>elp

TABEL RAMALAN PASANG SURUT1-7-1998 / 5-7-1998Stasiun : Sungai Asahan

Lokasi : 99.80° BT, 3.10° LU

TOT		JAM																						
TGL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1/7	1343	113.8	113.2	133.3	1699	215.0	258.6	291.2	306.0	300.7	277.6	243.2	206.4	176.0	159.0	158.4	173.1	197.8	224.9	246.2	255.2	248.9	2283	198.1
2/7	166.0	140.1	127.5	1319	1533	1873	227.0	263.6	289.6	299.6	292.2	269.9	238.3	205.1	177.8	162.2	160.7	1723	192.6	215.2	233 <i>5</i>	2419	237.7	221.8
3/7	1979	1723	151.7	142.1	146.8	1659	1959	230.8	263.4	286.7	296.0	289.4	268.8	238.8	206.2	178.0	159.8	154.8	162.8	180.6	202.7	222.7	235.1	236.4
4/7	226.2	207.2	184 5	164 <i>5</i>	153.2	154.5	169.6	1963	2293	261.7	286.4	297.8	293.1	273.0	241.7	205.7	172.7	1495	140.4	146.7	165.6	191.8	218.2	237.9
5/7	245.8	240.0	222.5	198.1	1739	157.2	153 <i>5</i>	1653	191.2	226.1	262.3	2913	306.0	302.1	279.7	243.1	200.0	159.7	130 9	119.6	127.6	152.4	1873	223.2

Appendix B.3. Table of Prediction Result

- 🗆 ×